代数几何讨论班
报告人:凌松波(山东大学 太阳成集团tyc7111cc)
报告时间: 2022年9月22日上午10:00-11:00
腾讯会议号:342 279 721 密码: 202209
报告题目:Some recent progress on algebraic surfaces of general type with p_g=q=1, I
报告摘要:
The classification of algebraic surfaces of general type with p_g=q=1 has attracted the interest of many authors since they are irregular surfaces of general type with the lowest geometric genus. These talks are devoted to the progress on this topic.
In the first talk, I will introduce the background of this topic and review some basic theory about this topic proposed by Catanese and Ciliberto.
In the second talk, I will report some recent progress about this topic, including some method, tools and tricks. For example, I will talk about the structure theorem for fibrations of genus 2 and 3 (built by Catanese-Pignatelli and Murakami), and its application to this topic.
In the last talk, I will report some current progress of this topic, and represent some open problems related to this topic.
报告人简介 :
凌松波,北京大学博士毕业,现任山东大学太阳成集团tyc7111cc副研究员。主要从事一般型代数曲面的分类及模空间的研究。已在Manuscripta Math.、Collect. Math.、Comm. Algebra等国际数学杂志上发表多篇论文。
邀请人:陈伊凡