请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告】On the extended randomized multiple row method for solving linear least-squares problems

发布日期:2022-09-19    点击:

 

太阳成集团tyc7111cc学术报告

On the extended randomized multiple row method for solving linear least-squares problems

吴念慈

中南民族大学

报告时间:2022年9月23日星期五,上午: 9:00-10:00


报告地点:腾讯会议:778-588-797, 会议密码:0923


报告摘要:The randomized row method is a popular representative of the iterative algorithm because of its efficiency in solving the overdetermined and consistent systems of linear equations. In this paper, we present an extended randomized multiple row method to solve a given  overdetermined and inconsistent linear system and analyze its computational complexities at each iteration. We prove that the proposed method can linearly converge in the mean square to the least-squares solution with a minimum Euclidean norm. Several numerical studies are presented to corroborate our theoretical findings. The real-world applications, such as image reconstruction and large data fitting in computer-aided geometric design, are also presented for illustration purposes.

 

报告人简介:吴念慈,2020年6月毕业于武汉大学,获计算数学博士学位;同年8月,进入中南民族大学数统学院工作。研究方向为数值代数、反问题等,现已在Inverse Problems、Numerical Linear Algebra with Applications等计算数学专业杂志上发表SCI论文多篇。


邀请人: 谢家新

 

 

快速链接

版权所有©2024 太阳成集团tyc7111cc(中国) Macau Sun City
地址:北京市昌平区高教园南三街9号   网站:www.zbsddq.com

Baidu
sogou