姓 名:冯仁忠
职 称:教授(博导)
所属系别:计算科学系
研究方向:压缩感知及其应用,偏微分方程数值解,计算机图形学
办公地点:沙河主E406-5
办公电话:
电子邮箱:fengrz@buaa.edu.cn
教育背景
1986-1990长沙理工大学数学学院 学士
1993-2000吉林大学数学系硕博
主要工作简历
2001-2003 大连理工大学数学研究所
2010-2011 香港浸会大学数学系访问
2003-现在 太阳成集团tyc7111cc数学系
科研项目
2021-2024 国家自然科学基金面上项目:《基于压缩感知的具有稀疏展开的多元函数的恢复》,主持人
2017-2019国家自然科学基金重大研究计划重点支持项目《不完全观测下信号恢复的理论与算法》,主要参加者
2013-2016 国家自然科学基金面上项目:《基于高维散乱数据的高精度拟插值格式的构造及其在双曲方程求解中的应用》,主持人
2013-2018 工信部重大预研项目《民用**专项》,主要参加者
2012-2015 中俄国际合作项目:《中俄大型******技术合作研究》,主要参加者
2009.1-2009 .12与北京航空材料研究院合作项目:《基于测量数据的产品合格检验算法设计》,主持人
2010-2013 国家自然科学基金重点项目:《高分辨数值方法及其在三维复杂流体中的应用》,主要参加者,子项目负责人
2006-2010 十一五规划空军装备预先研究项目:《***的关键技术》,第二负责人
2006-2007 国防科工委**基础项目:《***的高性能计算方法研究》,主要参加者
代表作论著
英文版
[25] Sanpeng Zheng, Renzhong Feng, Aitong Huang, An outlier detection and recovery method based on moving least squares quasi-interpolation scheme and ł0-minimization problem, Applied Mathematical Modelling 122 (2023) 127–150
[24] Sanpeng Zheng, Renzhong Feng, A variable projection method for the general radial basis function neural network, Applied Mathematics and Computation 451 (2023) 128009
[23] Renzhong Feng, Aitong Huang , Ming-Jun Lai and Zhaiming Shen, RECONSTRUCTION OF SPARSE POLYNOMIALS VIA QUASI-ORTHOGONAL MATCHING PURSUIT METHOD, Journal of Computational Mathematics, Vol.41, No.1, 2023, 18-38.
[22] Aitong Huang, Renzhong Feng and Andong Wang. The Sufficient Conditions for Orthogonal Matching Pursuit to Exactly Reconstruct Sparse Polynomials. Mathematics. 2022,10(19): 3703.
[21] Aitong Huang, Renzhong Feng and Sanpeng Zheng. The Recovery Guarantee for Orthogonal Matching Pursuit Method to Reconstruct Sparse Polynomials. Numerical Mathematics:Theory, Methods and Applications. 2022, 15(3): 793-818.
[20] Sanpeng Zheng , Renzhong Feng and Aitong Huang, The Optimal Shape Parameter for the Least Squares Approximation Based on the Radial Basis Function, Mathematics, 2 November 2020
[19] Sanpeng Zheng, Renzhong Feng , Aitong Huang, A modified moving least-squares suitable for scattered data fitting with outliers, Journal of Computational and Applied Mathematics, 370 (2020) 112655
[18] Shengjiao Yu, Renzhong Feng, Huiqiang Yue, ZhengWang and Tiegang Liu, Adjoint-Based Adaptive Isogeometric Discontinuous Galerkin Method for Euler Equations, Adv. Appl. Math. Mech. (2018), Vol. 10, No. 3, pp. 1-21
[17] Renzhong Feng, Junna Duan, High Accurate Finite Differences Based on RBF Interpolation and its Application in Solving Differential Equations, J Sci Comput(2018),vol.59,No.1,pp.1-28
[16] Renzhong Feng , Shun Peng, Quasi-interpolation scheme for arbitrary dimensional
scattered data approximation based on natural neighbors and RBF interpolation, Journal of Computational and Applied Mathematics 329(2018)95-105.
[15] Renzhong Feng and Lifang Song, Rational Quasi-Interpolation Approximation of Scattered Data in R^3, Numer. Math. Theor. Meth. Appl., Vol. 11, No. 1(2018), pp. 169-186
[14] Shengjiao Yu, Renzhong Feng, Tiegang Liu , An isogeometric discontinuous Galerkin method for Euler equations, Mathematical Methods in the Applied Sciences,2017, 40(8): 3129-3139.
[13] Renzhong Feng and ZhengWang,Simple and High-Accurate Schemes for Hyperbolic Conservation Laws,Journal of Applied Mathematics,Volume 2014, Article ID 275425, 13 pages
[12] Renzhong Feng and Yanan zhang, Piecewise Bivariate Hermite Interpolations for Large Sets of Scattered Data, Journal of Applied Mathematics, Volume 2013 (2013), Article ID 239703, 10 pages
[11] Renzhong Feng, High Order Cubic-Polynomial Interpolation Schemes based on Triangular Meshes, Communications in Computational Physics,2012,Vol. 12, No. 5, pp. 1588-1602
[10] Renzhong Feng, Xun Zhou, A Multivariate Multiquadric Quasi-interpolation with Quadric Reproduction, Journal of Computational Mathematics,vol.30,No.3, 2012,311-323.
[9] Renzhong Feng, Xun Zhou, A kind of multiquadric quasi-interpolation operator satisfying any degree polynomial reproduction property to scattered data, Journal of Computational and Applied Mathematics 235(2011)1502-1514
[8] Renzhong Feng, Feng Li, A shape-preserving quasi-interpolation operator satisfying quadratic polynomial reproduction property to scattered data, Journal of Computational and Applied Mathematics 225(2009) , 594-601
[7] Li Zha, Renzhong Feng, A scattered Hermite Interpolation Using Radial Basis Functions, Journal of Information & Computational Science 4: 1 (2007) 361-369
[6] XueZhang Liang, Renzhong Feng, Weighted mean convergence of Hakopian interpolation on the disk, Analysis in Theory and Applications 2007,vol.23,No.3,213-227.
[5] Li Zha, Renzhong Feng , A quasi-interpolation satisfying quadratic polynomial reproduction with radial basis functions, Numer.Math.J.Chinese Univ.(English ser.), No.4,vol.16: 348-357, 2007.
[4] Zhiqiang Xu, Renzhong Feng and Jiaguang Sun , Analytic and algebraic properties of canal Surfaces, Journal of Computational and Applied Mathematics, Vol.195 (2006), 220-228.
[3] Renzhong Feng and Renhong Wang , Closed Smooth Surface Defined from Cubic Triangular Splines, Journal of Computational Mathematics, vol.23 (2005), 67-74.
[2] Renzhong Feng and Renhong Wang, Smooth Spline Surfaces over Arbitrary Topological Triangular Meshes,Journal of Software,vol.14 (2003), 830-837.
[1] Xuezhang Liang, Chunmei Lü, Renzhong Feng, Properly posed sets of nodes for multivariate Lagrange interpolation in Rn, SIAM.Numer.Anal.,vol.39,No.2(2001),587-595.
中文版
[12]郭子滔,冯仁忠,一种高精度的修正的Hermite-ENO格式,计算物理,2018年
[11]何兵朋,冯仁忠,余胜蛟,基于差分进化算法的B样条曲线曲面拟合,图学学报,2016年02期
[10]余胜蛟,冯仁忠,一种改进的B样条曲线曲面正交距离拟合算法,浙江大学学报(理学版),2015年01期
[9]郭鸽,冯仁忠,胡鹏,基于三角网格的四阶Hermite型对流守恒格式,计算力学学报,2013年S1期
[8]邓金秋,冯仁忠,利于翼型优化设计的超临界翼型参数化方法,太阳成集团tyc7111cc学报,2011年03期
[7]冯仁忠,查理,局部构造C~2连续的三次B样条插值曲线和双三次插值曲面,图学学报,2005年06期
[6]冯仁忠,王仁宏,三次B样条曲线间G~2连续条件,大连理工大学学报,2003年04期
[5]冯仁忠,王仁宏,罗钟铉,The Relationship Between Weights and Control Vertices of Two Rational NURBS Curves Representing the Same Curve Parametrically and Geometrically,东北数学(英文版),2003年01期
[4]冯仁忠,梁学章,徐淳宁,R~s空间中的Lagrange插值,数学研究与评论,2003年03期
[3]冯仁忠,索忠林,Hakopian插值的弱收敛性,高等学校计算数学学报,2001年02期
[2]梁学章,冯仁忠,崔利宏,Lagrange Interpolation on a Sphere,东北数学(英文版),2000年02期
[1]冯仁忠,何甲兴,关于一类修正的三角插值多项式,数学研究与评论,1999年01期
发明专利
冯仁忠,余胜蛟,刘莲,邓金秋,基于四段有理Bézier曲线表示的曲率连续的翼型及其生成方法,ZL201410462256.4
冯仁忠,余胜蛟,刘铁钢,基于图形匹配算法的叶片检测方法,ZL201410109558.4
加入团队
教育部应用数学创新团队
举办会议
[1]第十七届全国流体力学数值方法研讨会,2015.08.19-22 云南昆明,秘书长
[2]International Symposium on Calculation Harmonic Analysis(计算调和分析国际研讨会),2018/06/22-25,北京,主办
教学活动
主讲专业课:数值逼近,偏微分方程数值解,数值分析
主讲公共课:高等数学,概率统计
所获奖励
2009年和2011年获北航优秀硕士生论文指导教师奖
社会工作
2007年参与国家“十一五”重点出版项目《数学大辞典》的计算数学逼近论方向的数学词条编撰工作。
社会兼职
中国计算数学会常务委员,2019-2023
推荐链接
版权所有©2024 太阳成集团tyc7111cc(中国) Macau Sun City
地址:北京市昌平区高教园南三街9号 网站:www.zbsddq.com