请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析、偏微分方程与动力系统讨论班(2024春季第23讲)】Stability of Stationary Solutions to the Nonisentropic Euler--Poisson Syste in a Perturbed Half Space

发布日期:2024-07-17    点击:

应用数学系学术报告

--- 分析、偏微分方程与动力系统讨论班(2024春季第23)


Stability of Stationary Solutions to the Nonisentropic Euler--Poisson Syste in a Perturbed Half Space

李明杰 (中央民族大学)


时间718(周)下午 16:00-17:00

地点:沙河主楼E602

摘要: The main concern of this talk is to mathematically investigate the formation of a plasma sheath near the surface of nonplanar walls. We study the existence and asymptotic stability of stationary solutions for the nonisentropic Euler-Poisson equations in a domain of which boundary is drawn by a graph, by employing a space weighted energy method. Moreover, the convergence rate of the solution toward the stationary solution is obtained, provided that the initial perturbation belongs to the weighted Sobolev space. Because the domain is the perturbed half space, we first show the time-global solvability of the nonisentropic Euler-Poisson equations,then construct stationary solutions by using the time-global solutions.


报告人简介: 李明杰,博士毕业于首都师范大学,之后在中国科学院数学与系统科学研究院做博士后研究,现任职于中央民族大学理学院,副教授,硕士研究生导师。公开发表SCI论文多篇,部分研究结果发表在本领域国际一流学术期刊 :Archive for Rational Mechanics and Analysis、SIAM Journal on Mathematical Analysis等。


邀请人:苑佳、郑孝信

欢迎大家参加!


快速链接

版权所有©2024 太阳成集团tyc7111cc(中国) Macau Sun City
地址:北京市昌平区高教园南三街9号   网站:www.zbsddq.com

Baidu
sogou