太阳成集团tyc7111cc学术报告
——几何测度论与相关领域讨论班
Global solvability and stationary solutions of singular quasilinear stochastic PDEs
谢宾 教授
(日本信州大学)
报告时间:2024年3月27日 (星期三) 下午14:00
报告地点: 学院路校区新主楼F103
报告摘要:We will mainly investigate the singular quasilinear stochastic PDE with spatial white noise as a potential over 1-dimensional torus. Such singular stochastic PDEs are derived from the study of the hydrodynamic scaling limit of a microscopic interacting particle system in a random environment. In this talk, we study the global existence of solutions in paracontrolled sense, and we also show the convergence of the solutions to its stationary solutions as time goes to infinity under suitable assumption. The main approach is based on energy inequality and Poincare inequality in our proofs. This talk is mainly based on a joint work with T. Funaki.
报告人简介:报告人谢宾, 信州大学教授,博士生导师。2008年3月获得日本国立东京大学数理科学博士学位,于同年4月就职于日本国立信州大学。曾任信州大学数学系主任,日本数学会地区代议员,现任日本数学会全国区代议员,杂志“数学通讯”的常任编委。报告人主要从事随机分析及相关领域的研究,特别对与交互粒子系统研究相关的随机偏微分方程感兴趣。报告人多次独立主持日本学术振兴会科学研究经费,主要科研成果发表于Annales de l'Institut Henri Poincaré-Probabilités et Statistiques,J. Differential Equations,Stochastic Process. Appl.等国际期刊。
邀请人: 梁湘玉
欢迎大家参加!