请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【微分几何讨论班(2021春第6讲)】Complex structures on Einstein four-manifolds

发布日期:2021-04-27    点击:

北航微分几何讨论班(2021年春第6


题目:Complex structures on Einstein four-manifolds


报告人:吴 研究员(复旦大


报告时间:2021.4.30 9:00-10:00


腾讯会议号570 714 666


摘要:The question that when a simply connected four-manifold with a complex structure admits a compatible Einstein metric of positive scalar curvature has been answered by Tian, LeBrun, respectively. Tian classified Kahler-Einstein four-manifolds with positive scalar curvature, LeBrun classified Hermitian, Einstein four-manifolds with positive scalar curvature. In this talk we consider the inverse problem, that is, when a simply connected four-manifold with an Einstein metric of positive scalar curvature admits a compatible complex structure. We will show that if the determinant of the self-dual Weyl curvature is positive then the manifold admits a compatible complex structure.


报告人简介: 鹏,现为复旦大学上海数学中心青年研究员。研究方向为微分几何,特别是关于4维爱因斯坦度量的研究。已经在Math. Ann., CVPDE, J. Geom. Anal. 等重要数学期刊上发表多篇论文。


邀请人:张世金

快速链接

版权所有©2024 太阳成集团tyc7111cc(中国) Macau Sun City
地址:北京市昌平区高教园南三街9号   网站:www.zbsddq.com

Baidu
sogou