太阳成集团tyc7111cc学术报告
——几何测度论与相关领域讨论班
Moore machine duality
Jacques Peyriere 教授
(巴黎萨克雷大学)
报告时间:2023年4月20日 (星期四) 上午10:00
报告地点: 学院路校区5号教学楼105
报告摘要:
Let q ≥ 2 be an integer. A Moore machine M is the data of two finite sets A (the set of states) and B (the output alphabet), of an element i ∈ A, of a mapping h from {1,2,...,q} to B, and a mapping from A×{1,2,...,q} to A. The last mapping can be viewed as follows: for each a ∈ A there are q arrows labeled 1, 2,. . . , q stemming from a and pointing to some state. Then each word w on the alphabet {1, 2, . . . , q} defines a path starting from the initial state i and ending at some state i · w. So, feeding the machine M with w gives the output h(i · w). It is known that, given a machine, there exists a unique minimal equivalent machine (i.e., with the least number of states). We give a new algorithm to construct minimal machines. This algorithm also provides a proof of the existence and uniqueness of minimal machine.
报告人简介:报告人Jacque Peyriere,法国巴黎萨克雷大学数学系退休教授。国际著名调和分析与分形专家,是该领域国际著名学者和重要领头人。
邀请人: 梁湘玉
欢迎大家参加!