请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【数学论坛及微分几何讨论班(2023秋季第4讲)】Sobolev inequalities and regularites of linearized complex Monge-Ampere and Hessian equations

发布日期:2023-09-12    点击:

北航数学论坛学术报告

-----微分几何讨论班(2023季第4讲)


题目: Sobolev inequalities and regularites of linearized complex Monge-Ampere and Hessian equations


报告人: 周 斌 教授 (北京大学)


时间:2023-9-19  10:45-11:45


地点:沙河主楼E404


摘要: In this talk, we study the regularity of solution to the linearized complex Monge-Amp\`ere and Hessian equations when the complex $k$-Hessian is bounded from above and below. We first establish some estimates of Green's functions associated to the linearized equations. Then we prove a class of new Sobolev inequalities. With these inequalities, we use Moser's iteration to investigate the a priori estimates of Hessian equations and their linearized equations, as well as the K\"ahler scalar curvature equation. In particular, we obtain the Harnack inequality for the linearized complex Monge-Amp\`ere and Hessian equations under an extra integrability condition on the coefficients.  The approach works in both real and complex case.  


报告人简介: 北京大学数学学院研究员,博士生导师,主要从事复几何,几何分析和完全非线性方程的研究。2012年获得澳大利亚基金会 Discovery Early Career Research Award奖,2018年获得国家级人才科学基金项目。已经在相关方向发表20多篇高质量的学术论文。


邀请人:张世金

 

 

快速链接

版权所有©2024 太阳成集团tyc7111cc(中国) Macau Sun City
地址:北京市昌平区高教园南三街9号   网站:www.zbsddq.com

Baidu
sogou