
Information Sciences 296 (2015) 25–41
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Transcale control for a class of discrete stochastic systems based
on wavelet packet decomposition
http://dx.doi.org/10.1016/j.ins.2014.10.039
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: zhaolin1585@163.com (L. Zhao), ymjia@buaa.edu.cn (Y. Jia).
Lin Zhao ⇑, Yingmin Jia
The Seventh Research Division, Beihang University (BUAA), Beijing 100191, PR China
a r t i c l e i n f o

Article history:
Received 8 July 2014
Received in revised form 13 October 2014
Accepted 16 October 2014
Available online 24 October 2014

Keywords:
Transcale control
LQG control
Tracking control
Multiscale system
Wavelet packet decomposition
a b s t r a c t

In this paper, a wavelet packet decomposition (WPD) based real-time transcale linear-
quadratic-Gaussian (LQG) tracking control algorithm is given for a class of discrete stochas-
tic systems, which is developed with the state-space models of wavelet packet coefficients
at the coarsest scale decomposition layer established by Haar WPD. The WPD-based
transcale control algorithm provides a compromise between performance index and com-
putational efficiency compared with the conventional LQG tracking control algorithm, and
it is an improvement of the wavelet transform based algorithm previously proposed. Sim-
ulation results are presented to demonstrate the effectiveness of the proposed algorithm.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The linear-quadratic-Gaussian (LQG) control is an optimal control of linear systems with quadratic cost function in the
presence of Gaussian noises, which has been deeply researched and many results have been obtained
[1,2,16,21,22,37,20]. For example, You et al. [37] discussed the quantised LQG control for linear stochastic systems; Arantes
et al. [20] investigated the application of LQG control in spacecraft attitude systems. Output tracking problem is one of the
most common and important issues in designing a control system, which has wide applications in dynamic processes in
industry, economics, and biology [15,8,31,38,4,39,40,36,41,9,27,33,10]. The main objective of tracking control is to make
the output of the model, via a controller, track the output of a given reference model as closely as possible. The LQG-based
tracking control algorithms in [8,31,38,4] can be regarded as the classical single scale system control method since they focus
on system represented at a single scale and design the control law at that scale. In practice, however, the system or output
may contain multiscale (or equivalently, multiresolution) features. Even if they do not have multiscale features, more con-
fidence can be obtained by using the multiscale processing algorithm, which can reduce the uncertainty and complexity of
the problems [5]. Moreover, the speed up computation of control actions have been studied in some optimal control to guar-
antee the complex control schemes in real time [34,14]. In our initial work [45], a wavelet transform (WT)-based transcale
LQG tracking control algorithm was proposed, which brought LQG control into a multiscale scenario and effectively
improved the computation efficiency of conventional LQG algorithm by parallel processing.

Models that describe process behavior at several spatial and temporal scales are essential for many engineering tasks ranging
from process analysis and design to operational monitoring, control and optimization [29]. Multiscale processing algorithm is an
effective tool to represent the phenomena occurred at different scales, see [23,25,5,11,12,17,42,18,28,19,6,7,32,43,29,30,26]. The
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wavelet transform (WT), which is a tool for describing multiscale data structures, has been used to develop multiscale processing
algorithm. For example, Zhao et al. [43] used WT to develop a robust transcale state estimation algorithm for multiresolution dis-
crete-time systems, which could not only fuse multiresolution sensor information but also improve the computation efficiency
and estimation accuracy; Stephanopoulos et al. [29,30] introduced an alternative philosophy to establish the multiscale models
by Haar WT and develop the multiscale model predictive control algorithm, which could also improve the computation efficiency.

Most of these approaches in [43,29,30,26,45] rely on the multiscale decomposition to systems or measurements through
WT, but sometimes it is not an optimal choice for discrete sequences compared with wavelet packet decomposition (WPD)
[13]. WPD is a transformation in which the signal passes through more filters than WT. For J scales decomposition, the WPD
produces 2J sets of coefficients as opposed to J þ 1 sets of coefficients in WT. However, due to the downsampling process the
overall number of coefficients is still the same without redundancy. From the point of view of signal analysis, the standard
WT may not produce the best result, since it is limited to wavelet basis [35,13]. In fact, the wavelet basis based WT is only a
special WPD. From the point of view of computation, the decomposition structure of WPD gives us more chances to improve
the computation efficiency compared with that of WT. So it is necessary to further study the WPD-based algorithm for con-
trol and estimation of discrete stochastic systems, which can ensure the multiscale processing algorithm be better combined
with conventional control algorithm.

Motivated by the above discussions, in this study, we introduce a WPD-based real-time transcale LQG tracking control
algorithm for the output tracking of discrete stochastic systems. The term transcale control is defined in [44,45], which is
applied to emphasize the fact that such a control strategy is capable of designing the control law at the finest scale but
reflecting the desired performances at different coarser scales. The Haar WPD is employed to establish the state-space mod-
els of wavelet packet coefficients (WPC) at the coarsest scale decomposition layer. Based on these models, the real-time tran-
scale LQG tracking control algorithm is proposed by three steps. The computational efficiency analysis is given. It can be
proved that the control law designed using the proposed algorithm has the desired performance in the meaning of transcale
control.

In summary, the contributions of this paper are as follows:

(1) The LQG tracking control algorithm is further developed in the multiscale framework. This WPD-based algorithm can
improve the computation efficiency compared with the LQG tracking control algorithm.

(2) The WPD is firstly proposed into the multiscale control for discrete stochastic systems (compared with [29,30,45]).
(3) The transcale LQG tracking control algorithm in [45] is developed based on WT while the decomposition under WT is a

special WPD, so the WT-based algorithm in [45] is only a special case of the WPD-based algorithm developed in this
paper.

(4) From the point of the view of computation efficiency, the decomposition structure in this paper is better than that of
others, so the WPD-based algorithm can effectively improve the computation efficiency compared with the WT-based
algorithm in [45].

The rest of this paper is organized as follows. The control problem formulation is summarized in Section 2. A brief intro-
duction about the Haar WPD of discrete sequences is given in Section 3. The WPD-based control scheme is presented in Sec-
tion 4 numerical example of the derived control design is presented in Section 5. Conclusions are given in Section 6.

2. Problem formulation

Consider the following discrete stochastic system
xkþ1 ¼ Axk þ Buk þ Dwk ð1Þ
yk ¼ Cxk þ vk ð2Þ
zk ¼ Cdxk; k ¼ 0;1; . . . ;N ð3Þ
where xk 2 Rn, uk 2 Rm, yk 2 Rq and zk 2 Rs are the state, control input, measurement, and output vectors respectively.
A 2 Rn�n, B 2 Rn�m, D 2 Rn�p are the system matrices, C 2 Rq�n is the observation matrix, Cd 2 Rs�n is the output matrix.
The system noise wk 2 Rp and the measurement noise vk 2 Rq are uncorrelated white zero-mean Gaussian vectors with
covariance matrices UandV respectively. The statistic characteristics of initial x0 are given as Efx0g ¼ m0 2 Rn,
Efðx0 �m0Þðx0 �m0ÞTg ¼ P0 2 Rn�n.

In this paper, the finite-horizon output tracking problem is considered, where the desired output is given by �zk 2 Rs , the
time horizon N ¼ M2J � 1 and M is a positive integer. Denote
ek , �zk � zk ð4Þ
The LQG tracking control can solve the above problem, which is to find uk such that the following cost function is minimized
JðukÞ ,
1
2

E eT
NFeN þ

XN�1

k¼0

ðeT
k Qek þ uT

k RukÞ
( )

ð5Þ
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F;Q 2 Rs�s are positive-semidefinite matrices, R 2 Rm�m is positive-definite matrix, uk is unconstrained. The following sepa-
ration principle guarantees the Kalman filter and the linear-quadratic tracking regulator can be designed and computed
independently.

Lemma 1. To guarantee the cost function (6) is minimized, if ðA;CdÞ is observable, then the control law is designed as
uk ¼ �½Rþ BT Pkþ1B��1
BT ½Pkþ1Ax̂k þ gkþ1� ð6Þ
where the real, symmetric and positive-definite matrix Pk 2 Rn�n is the solution to the Riccati-type matrix difference equation
Pk ¼ CT
dQCd þ AT Pkþ1A� AT Pkþ1BðRþ BT Pkþ1BÞ�1

BT Pkþ1A ð7Þ
PN ¼ F ð8Þ
The additional vector gk 2 Rn is a feed-forward term, which is the solution to the linear vector difference equation
gk ¼ �CT
dQ�zk � AT Pkþ1BðRþ BT Pkþ1BÞ�1

BT gkþ1 þ AT gkþ1 ð9Þ
gN ¼ �CT

dF�zN ð10Þ
and x̂k , x̂kjk ¼ EfxkjYkg is the estimate of xk, satisfying the following Kalman filtering equations
x̂kjk ¼ x̂kjk�1 þ Kkðyk � Cx̂kjk�1Þ ð11Þ
x̂kjk�1 ¼ Ax̂k�1jk�1 þ Buk�1 ð12Þ

Kk ¼ Pkjk�1CTðCPkjk�1CT þ VÞ�1 ð13Þ
Pkjk�1 ¼ APk�1jk�1AT þ DUDT ð14Þ

Pkjk ¼ Pkjk�1 � Pkjk�1CTðCPkjk�1CT þ VÞ�1
CPkjk�1 ð15Þ
where Pkjk ¼ Efðxkjk � x̂kjkÞðxkjk � x̂kjkÞTg; P0j0 ¼ P0; x̂0 ¼ m0;Yk ¼ fy0; y1; � � � ; ykg .
Proof. The proof of Lemma 1 is similar to the LQG control of discrete stochastic systems in [16] and thus is omitted for
brevity. h

In this paper, our objective is to develop a novel WPD-based real-time transcale LQG tracking control algorithm, which
can ensure the multiscale processing algorithm be better combined with LQG tracking control algorithm than the WT-based
algorithm in [45].

3. The WPD of discrete sequences

In the WT of discrete sequences, the approximations are the low-frequency components of discrete sequences and the
details are the high-frequency components. For a given discrete sequence aj;n 2 l2 at scale j (aj;n is assumed to be a scalar
sequence here), the approximation coefficients at scale jþ 1 are derived by down sampling the output of low-pass filter by two
ajþ1;k ¼
X

n

hn�2kaj;n ð16Þ
Some details are lost from aj;n due to low-pass filtering, which could be computed by down sampling the output of high-pass
filter by two
dajþ1;k ¼
X

n

gn�2kaj;n ð17Þ
where dajþ1;k is called the detail coefficient at scale jþ 1 . Here, hk and gk are the wavelet filter coefficients, which are deter-
mined by the scale function and wavelet function. Eqs. (16) and (17) are the decompositions of original discrete sequence,
and the reconstruction is given as
aj;n ¼
X

k

hn�2kajþ1;k þ
X

k

gn�2kdajþ1;k ð18Þ
The WPD of discrete sequences is a transform where the discrete sequences are passed through more filters than WT. In the
WT, each level is calculated by passing the previous approximation coefficients through high and low-pass filters. However,
in the WPD, both the detail and approximation coefficients are decomposed [35]. The deduction equations of WPC are
defined as
a2l
jþ1;k ¼

X
n

hn�2kal
j;n ð19Þ
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a2lþ1
jþ1;k ¼

X
n

gn�2kal
j;n ð20Þ
and the reconstruction is given as
al
j;n ¼

X
k

hn�2ka2l
jþ1;k þ

X
k

gn�2ka2lþ1
jþ1;k ð21Þ
where l represents the space serial number at scale j. Fig. 1 illustrates the decomposition mechanism used in WPD.
For simplicity and efficiency, the Haar WPD will be used through out this paper. As in (19) and (20), the Haar WPD is given

as
a2l
jþ1;k ¼

ffiffiffi
2
p

2
al

j;2k þ al
j;2kþ1

� �
ð22Þ

a2lþ1
jþ1;k ¼

ffiffiffi
2
p

2
al

j;2k � al
j;2kþ1

� �
ð23Þ
Denote j ¼ 0;1; . . . ; J, where 0 and J represent the finest and the coarsest scale, respectively. For J scales decomposition, the
WPD produces 2J sets of coefficients as opposed to J þ 1 sets for the WT. However, due to the down sampling process, the
overall number of coefficients is still the same and there is no redundancy. In fact, the initial frequency band of the discrete
sequence is equally divided into 2J frequency subbands under J scales WPD.

Denote kj as the sequential time index with the sampling rate sj at scale j, where sj satisfies sj ¼ s0

2j and kj satisfies
kj ¼ 2J�jkJ þ 2J�j � 1, then the decomposition in (22) and (23) can be rewritten as
a2l
jþ1;kjþ1

¼
ffiffiffi
2
p

2
al

j;kj�1 þ al
j;kj

� �
ð24Þ

a2lþ1
jþ1;kjþ1

¼
ffiffiffi
2
p

2
al

j;kj�1 � al
j;kj

� �
ð25Þ
For a given discrete sequence with length M2J at scale 0, the J scale Haar WPD can be fulfilled in M data blocks, respec-
tively. Fig. 2 illustrates the dyadic tree structure of WPC under 2 scale Haar WPD in the k2th data block. Denote the following
data block
AlðkjÞ , al
j;kj�2J�jþ1

; al
j;kj�2J�jþ2

; � � � ; al
j;kj

h i
ð26Þ
then the vector form of (24) and (25) can be derived in the following operator form
A2lðkjþ1Þ ¼ Hjþ1AlðkjÞ
A2lþ1ðkjþ1Þ ¼ Gjþ1AlðkjÞ

(
ð27Þ
Fig. 1. Schematic diagrams of WPD.



Fig. 2. The dyadic tree structure of WPC under 2 scale Haar WPD in the k2th data block.

Fig. 3. The 3 scales WPD under different wavelet packet bases.
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where operators Hjþ1 2 R2J�j�1�2J�j

and Gjþ1 2 R2J�j�1�2J�j

are composed of low-pass and high-pass Haar WPD filters coefficients
from scale j to scale jþ 1 . Moreover, AlðkjÞ can be decomposed into the coarsest scale decomposition layer by using the fol-
lowing transformation
A2J�j lðkJÞ

A2J�j lþ1ðkJÞ
..
.

A2J�j lþ2J�j�1ðkJÞ

2666664

3777775 ¼ TJjjAlðkjÞ ð28Þ
HJHJ�1 � � �Hjþ1

GJHJ�1 � � �Hjþ1

26 37

where TJjj ¼

..

.

GJGJ�1 � � �Gjþ1

664 775 is a square orthogonal matrix. For example, if J ¼ 2, we have
T2j0 ¼
H2H1

G2H1

G2G1

264
375 ¼

1
2

1
2

1
2

1
2

1
2

1
2 � 1

2 � 1
2

1
2 � 1

2
1
2 � 1

2
1
2 � 1

2 � 1
2

1
2

26664
37775 ð29Þ
Remark 1. If a0
0;k0
2 Rn is a vector sequence, the decomposition under Haar WPD still satisfies (24) and (25). For example, if

J ¼ 2, we have
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T2j0 ¼
H2H1

G2H1

G2G1

264
375 ¼

1
2 I2

1
2 I2

1
2 I2

1
2 I2

1
2 I2

1
2 I2 � 1

2 I2 � 1
2 I2

1
2 I2 � 1

2 I2
1
2 I2 � 1

2 I2
1
2 I2 � 1

2 I2 � 1
2 I2

1
2 I2

26664
37775 ð30Þ
where I2 2 R2�2 is a unit matrix.
Consider a discrete sequence a ¼ fa0; a1; a2; a3; a4; a5; a6; a7g where aiði ¼ 0;1; . . . ;7Þ is constant. Denote U be an orthog-

onal basis and Ua be the sequence of coefficients of a under the decomposition of orthogonal basis U, then 3 scales WPD
of a under different wavelet packet bases is shown in Fig. 3, where H and G are composed by filter response of Haar wavelet
[13]. Here, U1a ¼ fa0

3;0; a
1
3;0; a

2
3;0; a

3
3;0; a

4
3;0; a

5
3;0; a

6
3;0; a

7
3;0g is the coefficients of a in the wavelet packet basis, U2a ¼ fa0

3;0;

a1
3;0; a

2
3;0; a

3
3;0; a

2
2;0; a

2
2;1; a

3
2;0; a

3
2;1g is the coefficients of a in another wavelet packet basis, U3a ¼ fa0

3;0; a
1
3;0; a

1
2;0;

a1
2;1; a

1
1;0; a

1
1;1; a

1
1;2; a

1
1;3g is the coefficients of a in the wavelet basis, and U1;U2;U3 are all orthogonal bases. In fact, we have

other combination forms of coefficients under different wavelet packet bases, and the wavelet basis decomposition based
WT is only a special WPD [13].

The best-basis selection is important in WPD. Ref. [13] applied an additive information cost function to ensure the best-
basis such that information cost function is minimal. For different purposes, we can choose different orthogonal bases to act
as best-basis and fulfill decomposition. In this paper, we choose the decomposition structure in U1a (all the coefficients at
the coarsest scale decomposition layer) as the best basis decomposition and develop the algorithm in that case, since from
the point of view of computing efficiency, this decomposition structure is better than others, which will be discussed later.

Remark 2. In this subsection, we have not given the further explanations about the decomposition and reconstruct
equations in (16)–(23) for brevity. Readers can refer to [23,35,3,24] to get the detailed derivation of these equations.
4. Main results

Represent the system (1)–(4) into the following multiscale manner
x0
0;k0þ1 ¼ Ax0

0;k0
þ Bu0

0;k0
þ Dw0

0;k0
ð31Þ

y0
0;k0
¼ Cx0

0;k0
þ v0

0;k0
ð32Þ

z0
0;k0
¼ Cdx0

0;k0
ð33Þ

e0
0;k0
¼ �z0

0;k0
� z0

0;k0
ð34Þ
Denote AðjÞ ¼ A2j

;BðjÞ ¼ ðI þ A2j�1

Þ � � � ðI þ AÞ ¼
P2j�1

i¼0 Ai
;Að0Þ ¼ A, and Bð0Þ ¼ I, where j ¼ 1;2; . . . ; J. In order to facilitate the con-

trol development, the following assumptions are made for system (31)–(34):

Assumption 1. Matrix BðjÞ is nonsingular, rankðBÞ ¼ m, and rankðDÞ ¼ p.
Assumption 2. The matrix pair ðAðjÞ;CdÞ is observable.
Remark 3. If all the eigenvalues of A being within the unit circle, then, for any j, BðjÞ is nonsingular.
4.1. The state-space models of WPC

The state-space models of WPC at the decomposition layer of scale j are established in this subsection.

Theorem 1. Based on the Haar WPD, the state-space models of WPC at the decomposition layer of scale j are established as
xlðjÞ
j;kjþ1 ¼ AðjÞxlðjÞ

j;kj
þ BðjÞBulðjÞ

j;kj
þ BðjÞDwlðjÞ

j;kj
ð35Þ

ylðjÞ
j;kj
¼ CxlðjÞ

j;kj
þ v lðjÞ

j;kj
ð36Þ

zlðjÞ
j;kj
¼ CdxlðjÞ

j;kj
ð37Þ

xlðjÞþ1
j;kjþ1 ¼ AðjÞxlðjÞþ1

j;kj
þ BðjÞBulðjÞþ1

j;kj
þ BðjÞDwlðjÞþ1

j;kj
ð38Þ

ylðjÞþ1
j;kj

¼ CxlðjÞþ1
j;kj

þ v lðjÞþ1
j;kj

ð39Þ

zlðjÞþ1
j;kj

¼ CdxlðjÞþ1
j;kj

ð40Þ
where lðjÞ ¼ 0;2; . . . ;2j � 2 is even sequence and
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BulðjÞ
j;kj
¼ ðB

ðjÞÞ
�1ffiffiffi

2
p Aðj�1ÞBðj�1ÞBu

lðjÞ
2

j�1;kj�1�1 þ ðI þ Aðj�1ÞÞBðj�1ÞBu
lðjÞ
2

j�1;kj�1
þ Bðj�1ÞBu

lðjÞ
2

j�1;kj�1þ1

� �
ð41Þ

DwlðjÞ
j;kj
¼ ðB

ðjÞÞ
�1ffiffiffi

2
p Aðj�1ÞBðj�1ÞDw

lðjÞ
2

j�1;kj�1�1 þ ðI þ Aðj�1ÞÞBðj�1ÞDw
lðjÞ
2

j�1;kj�1
þ Bðj�1ÞDw

lðjÞ
2

j�1;kj�1þ1

� �
ð42Þ

BulðjÞþ1
j;kj

¼ ðB
ðjÞÞ
�1ffiffiffi

2
p Aðj�1ÞBðj�1ÞBu

lðjÞ
2

j�1;kj�1�1 þ ðI � Aðj�1ÞÞBðj�1ÞBu
lðjÞ
2

j�1;kj�1
� Bðj�1ÞBu

lðjÞ
2

j�1;kj�1þ1

� �
ð43Þ

DwlðjÞþ1
j;kj

¼ ðB
ðjÞÞ
�1ffiffiffi

2
p Aðj�1ÞBðj�1ÞDw

lðjÞ
2

j�1;kj�1�1 þ ðI � Aðj�1ÞÞBðj�1ÞDw
lðjÞ
2

j�1;kj�1
� Bðj�1ÞDw

lðjÞ
2

j�1;kj�1þ1

� �
ð44Þ

EfwlðjÞ
j;kj
g ¼ 0; EfwlðjÞ

j;kj
wlðjÞ;T

j;kj
g ¼ UlðjÞ

j ; Efv lðjÞ
j;kj
g ¼ 0; Efv lðjÞ

j;kj
v lðjÞ;T

j;kj
g ¼ V

EfwlðjÞ
j;kj

v lðjÞ;T
j;kj
g ¼ 0;UlðjÞ

j ¼
1
2

DþðBðjÞÞ
�1

Aðj�1ÞBðj�1ÞD
h i

U
lðjÞ
2

j�1 Dþ
��
ðBðjÞÞ

�1
Aðj�1ÞBðj�1ÞD

iT

þ DþðBðjÞÞ
�1
ðI þ Aðj�1ÞÞBðj�1ÞD

h i
U

lðjÞ
2

j�1 DþðBðjÞÞ
�1
ðI þ Aðj�1ÞÞBðj�1ÞD

h iT

þ DþðBðjÞÞ
�1

Bðj�1ÞD
h i

U
lðjÞ
2

j�1 Dþ
�
ðBðjÞÞ

�1
Bðj�1ÞD

iT
	
;

EfwlðjÞþ1
j;kj
g ¼ 0; EfwlðjÞþ1

j;kj
wlðjÞþ1;T

j;kj
g ¼ UlðjÞþ1

j

Efv lðjÞþ1
j;kj
g ¼ 0; Efv lðjÞþ1

j;kj
vT

j;kj
g ¼ V ; Efwj;kj

v lðjÞþ1;T
j;kj

g ¼ 0

UlðjÞþ1
j ¼ 1

2
DþðBjÞ

�1
Aðj�1ÞBðj�1ÞD

h i
U

lðjÞ
2

j�1 DþðBðjÞÞ
�1

Aðj�1ÞBðj�1ÞD
h iT

�

þ DþðBjÞ
�1
ðI � Aðj�1ÞÞBðj�1ÞD

h i
U

lðjÞ
2

j�1 DþðBjÞ
�1
ðI � Aðj�1ÞÞBðj�1ÞD

h iT

þ DþðBjÞ
�1

Bðj�1ÞD
h i

U
lðjÞ
2

j�1 DþðBjÞ
�1

Bðj�1ÞD
h iT

	
;Dþ ¼ ðDT DÞ�1

DT :
Here, if lðjÞ
2 is even, lðjÞ

2 ¼ lðj� 1Þ, otherwise if lðjÞ
2 is odd, lðjÞ

2 ¼ lðj� 1Þ þ 1; lð�1Þ ¼ 0;U0
0 ¼ U.
Proof. See the Appendix A. h

Note that the time models (31)–(33) at the finest scale 0 are transformed into the time-scale models (35)–(44) at different

coarser scale decomposition layers. The outputs zlðjÞ
j;kj

and zlðjÞþ1
j;kj

are the WPC of output (3). Then, decompose the desired output

as in (24) and (25), we obtain �zlðjÞ
j;kj

and �zlðjÞþ1
j;kj

. Denote
elðjÞ
j;kj
, zlðjÞ

j;kj
� �zlðjÞ

j;kj

elðjÞþ1
j;kj

, zlðjÞþ1
j;kj

� �zlðjÞþ1
j;kj

8<: ð45Þ
Lemma 2. Based on the Haar WPD, the following equation can be derived,
XN

k0¼0

ke0
0;k0
k2 ¼

X
lðJÞ

XlðJÞþ1

s¼lðJÞ

XM�1

kJ¼0

kes
J;kJ
k2 ð46Þ
where N ¼ M2J � 1 and k � k represents the 2-norm of vector.
Proof. See the Appendix B. h
Remark 4. Note that the tracking from z0
0;k0

to the desired output �z0
0;k0

at scale 0 is divided into 2J independent tracking at the

decomposition layer of scale J, which means if zlðJÞ
J;kJ

and zlðJÞþ1
J;kJ

can all ‘‘near’’ �zlðJÞ
J;kJ

and �zlðJÞþ1
J;kJ

respectively, the output z0
0;k0

can also

‘‘near’’ the desired output �z0
0;k0

.
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Remark 5. The multiscale system in (35)–(40) is a rather complex system involving three indexes: including a space serial
number index, a scale index and a time index. For example, consider xlðjÞ

j;kj
in (35), lðjÞ represents the space serial number index,

j represents the scale index and kj represents the time index.
4.2. The WPD-based algorithm

Based on Theorem 1, the 2J state-space models for WPC at different sets can be established. The WPD-based real-time
transcale tracking control algorithm relies on the following two parts.

Part 1: Design ulðJÞ
J;kJ

and ulðJÞþ1
J;kJ

at the decomposition layer of scale J.

Based on Lemma 1 and Theorem 1, designing ulðJÞ
J;kJ

and ulðJÞþ1
J;kJ

at the decomposition layer of scale J such that the following
cost functions are minimized
JlðJÞðulðJÞ
J;kJ
Þ , 1

2
E elðJÞ;T

J;M�1
bF lðJÞ

J elðJÞ
J;M�1 þ

XM�2

kJ¼0

elðJÞ;T
J;kJ

bQ lðJÞ
J elðJÞ

J;kJ
þ ulðJÞ;T

J;kJ

bRlðJÞ
J ulðJÞ

J;kJ

� �8<:
9=; ð47Þ

JlðJÞþ1ðulðJÞþ1
J;kJ
Þ , 1

2
E elðJÞþ1;T

J;M�1
bF lðJÞþ1

J elðJÞþ1
J;M�1 þ

XM�2

kJ¼0

elðJÞþ1;T
J;kJ

bQ lðJÞþ1
J elðJÞþ1

J;kJ
þ ulðJÞþ1;T

J;kJ

bRlðJÞþ1
J ulðJÞþ1

J;kJ

� �8<:
9=; ð48Þ
F̂ lðJÞ
J ; Q̂ lðJÞ

J ; F̂lðJÞþ1
J ; Q̂ lðJÞþ1

J 2 Rs�s; R̂lðJÞ
J ; R̂lðJÞþ1

J 2 Rm�m are positive definite matrices.

Remark 6. The weighting matrices at different sets are mutual independence, which are generally taken as diagonal
matrices in engineering practice [1].

Part 2: Compute u0
0;k0

by using ulðJÞ
J;kJ

and ulðJÞþ1
J;kJ

.

Set u0
0;0 ¼ b0

0; u
lð1Þ
0;0 ¼ blð1Þ

0 ;ulð1Þþ1
0;0 ¼ blð1Þþ1

0 ; . . . ;ulðJ�1Þ
J�1;0 ¼ blðJ�1Þ

J�1 ;ulðJ�1Þþ1
J�1;0 ¼ blðJ�1Þþ1

J�1 , where b0
0 2 Rm; blð1Þ

0 2 Rm; blð1Þþ1
0 2 Rm; . . . ;

blðJ�1Þ
J�1 2 RmblðJ�1Þþ1

J�1 2 Rm are given real-vectors. From (41) and (43), we have
ffiffiffi
2
p

BðjÞBulðjÞ
j;kj
¼ Aðj�1ÞBðj�1ÞBu

lðjÞ
2

j�1;kj�1�1 þ ðI þ Aðj�1ÞÞBðj�1ÞBu
lðjÞ
2

j�1;kj�1
þ Bðj�1ÞBu

lðjÞ
2

j�1;kj�1þ1 ð49Þ

ffiffiffi
2
p

BðjÞBulðjÞþ1
j;kj

¼ Aðj�1ÞBðj�1ÞBu
lðjÞ
2

j�1;kj�1�1 þ ðI � Aðj�1ÞÞBðj�1ÞBu
lðjÞ
2

j�1;kj�1
� Bðj�1ÞBu

lðjÞ
2

j�1;kj�1þ1 ð50Þ
Then, from (49) plus (50), we can obtain
u
lðjÞ
2

j�1;kj�1
¼

ffiffiffi
2
p

2
BþðBðj�1ÞÞ

�1
BðjÞBðulðjÞ

j;kj
þ ulðjÞþ1

j;kj
Þ � BþðBðj�1ÞÞ

�1
Aðj�1ÞBðj�1ÞBu

lðjÞ
2

j�1;kj�1�1 ð51Þ
from (49) minus (50), we can obtain
u
lðjÞ
2

j�1;kj�1þ1 ¼
ffiffiffi
2
p

2
BþðBðj�1ÞÞ

�1
BðjÞBðulðjÞ

j;kj
� ulðjÞþ1

j;kj
Þ � BþðBðj�1ÞÞ

�1
Aðj�1ÞBðj�1ÞBu

lðjÞ
2

j�1;kj�1
ð52Þ
where Bþ ¼ ðBT BÞ�1
BT . Since ulðJÞ

J;0 ;u
lðJÞþ1
J;0 are known, ulðJ�1Þ

J�1;0 ¼ blðJ�1Þ
J�1 , and ulðJ�1Þþ1

J�1;0 ¼ blðJ�1Þþ1
J�1 ;u

lðJÞ
2

J�1;1;u
lðJÞ
2

J�1;2 can be computed from

(51) and (52), u
lðJÞ
2

J�1;3;u
lðJÞ
2

J�1;4 can be computed from ulðJÞ
J;1 ;u

lðJÞþ1
J;1 and u

lðJÞ
2

J�1;2, and so forth, u
lðJÞ
2

J�1;kJ�1
ðkJ�1 ¼ 5; . . . ;2M � 2Þ can be suc-

cessively computed, where if lðJÞ
2 is even, lðJÞ

2 ¼ lðJ � 1Þ, otherwise if lðJÞ
2 is odd, lðJÞ

2 ¼ lðJ � 1Þ þ 1. Then, repeat this process, u0
0;k0

can be computed from ulð1Þ
1;k1

;ulð1Þþ1
1;k1

.
The term real-time means that a control law is given at the finest scale at the previous sampling time, a single new mea-

surement is acquired at the present sampling time, then the new state estimate information at the coarsest scale decompo-
sition layer can be derived based upon all measurements available at the finest scale and the new control law is obtained at
the finest scale at the present sampling time. Based on Parts 1–2, the WPD-based transcale LQG tracking control algorithm is
developed as follows:

Step 1: Establish the 2J state-space models of WPC at the coarsest scale decomposition layer J as in Theorem 1 and decom-
pose the desired output.

Step 2: Solve the 2J Riccati-type matrix difference equations as in (7) and (8), 2J linear vector difference equations as in (9)
and (10), and 2J Kalman filtering gain equations as in (13)–(15) for different WPC sets at the coarsest scale decomposition
layer J.

At the coarsest scale decomposition layer J, for lðJÞ, solve the Riccati-type matrix difference equations, linear vector dif-
ference equations, and the Kalman filtering gain equations as follows:
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PlðJÞ
J;kJ
¼ CT

d
bQ lðJÞ

J Cd þ AðJÞ;T PlðJÞ
J;kJþ1AðJÞ � AðJÞ;T PlðJÞ

J;kJþ1BðJÞB½bRlðJÞ
J þ ðB

ðJÞBÞT PlðJÞ
J;kJþ1BðJÞB�

�1
ðBðJÞBÞT PlðJÞ

J;kJþ1AðJÞ ð53Þ

PlðJÞ
J;M�1 ¼ bF lðJÞ

J ð54Þ

glðJÞ
J;kJ
¼ �CT

d
bQ lðJÞ

J
�zlðJÞ

J;kJ
� AðJÞ;T PlðJÞ

J;kJþ1BðJÞB½bRlðJÞ
J þ ðB

ðJÞBÞT PlðJÞ
J;kJþ1BðJÞB�

�1
ðBðJÞBÞT glðJÞ

J;kJþ1 þ AðJÞ;T glðJÞ
J;kJþ1 ð55Þ

glðJÞ
J;M�1 ¼ �CT

d
bF lðJÞ

J
�zlðJÞ

J;M�1 ð56Þ

PlðJÞ
J;kJ jkJ�1 ¼ AðJÞPlðJÞ

J;kJ�1jkJ�1AðJÞ;T þ DUlðJÞ
J DT ð57Þ

KlðJÞ
J;kJ
¼ PlðJÞ

J;kJ jkJ�1CT ½CPlðJÞ
J;kJ jkJ�1CT þ V �

�1
ð58Þ

PlðJÞ
J;kJ jkJ

¼ PlðJÞ
J;kJ jkJ�1 � PlðJÞ

J;kJ jkJ�1CT ½CPlðJÞ
J;kJ jkJ�1CT þ V �

�1
CPlðJÞ

J;kJ jkJ�1 ð59Þ
for lðJÞ þ 1, solve the Riccati-type matrix difference equations, linear vector difference equations, and the Kalman filtering
gain equations as follows:
PlðJÞþ1
J;kJ

¼ CT
d
bQ lðJÞþ1

J Cd þ AðJÞ;T PlðJÞþ1
J;kJþ1AðJÞ � AðJÞ;T PlðJÞþ1

J;kJþ1BðJÞB½bRlðJÞþ1
J þ ðBðJÞBÞT PlðJÞþ1

J;kJþ1BðJÞB�
�1
ðBðJÞBÞT PlðJÞþ1

J;kJþ1AðJÞ ð60Þ

PlðJÞþ1
J;M�1 ¼ bF lðJÞþ1

J ð61Þ

glðJÞþ1
J;kJ

¼ �CT
d
bQ lðJÞþ1

J
�zlðJÞ

J;kJ
� AðJÞ;T PlðJÞ

J;kJþ1BðJÞB½bRlðJÞþ1
J þ ðBðJÞBÞT PlðJÞþ1

J;kJþ1BðJÞB�
�1
ðBðJÞBÞT glðJÞþ1

J;kJþ1 þ AðJÞ;T glðJÞþ1
J;kJþ1 ð62Þ

glðJÞþ1
J;M�1 ¼ �CT

d
bF lðJÞþ1

J
�zlðJÞþ1

J;M�1 ð63Þ

PlðJÞþ1
J;kJ jkJ�1 ¼ AðJÞPlðJÞþ1

J;kJ�1jkJ�1AðJÞ;T þ DUlðJÞþ1
J DT ð64Þ

KlðJÞþ1
J;kJ

¼ PlðJÞþ1
J;kJ jkJ�1CT ½CPlðJÞþ1

J;kJ jkJ�1CT þ V �
�1

ð65Þ

PlðJÞþ1
J;kJ jkJ

¼ PlðJÞþ1
J;kJ jkJ�1 � PlðJÞþ1

J;kJ jkJ�1CT ½CPlðJÞþ1
J;kJ jkJ�1CT þ V �

�1
CPlðJÞþ1

J;kJ jkJ�1 ð66Þ
where lðJÞ ¼ 0;2; . . . ;2J � 2.
Step 3: Compute the control law u0

0;k0
at scale 0.

At the decomposition layer of scale J, assume that x̂lðJÞ
J;kJ�1jkJ�1; x̂

lðJÞþ1
J;kJ�1jkJ�1 are given, then from Steps 1–2, we have
x̂lðJÞ
J;kJ jkJ�1 ¼ AðJÞx̂lðJÞ

J;kJ�1jkJ�1 þ BðJÞBulðJÞ
J;kJ�1 ð67Þ

x̂lðJÞ
J;kJ jkJ

¼ x̂lðJÞ
J;kJ jkJ�1 þ KlðJÞ

J;kJ
ðylðJÞ

J;kJ
� Cx̂lðJÞ

J;kJ jkJ�1Þ ð68Þ
Fig. 4. Compute u0
0;k0

under 2 scales Haar WPD.
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ulðJÞ
J;kJ
¼ �½bRlðJÞ

J þ ðB
ðJÞBÞT PlðJÞ

J;kJþ1BðJÞB�
�1
ðBðJÞBÞTðPlðJÞ

J;kJþ1AðJÞx̂lðJÞ
J;kJ jkJ
þ glðJÞ

J;kJþ1Þ ð69Þ

x̂lðJÞþ1
J;kJ jkJ�1 ¼ AðJÞx̂lðJÞþ1

J;kJ�1jkJ�1 þ BðJÞBulðJÞþ1
J;kJ�1 ð70Þ

x̂lðJÞþ1
J;kJ jkJ

¼ x̂lðJÞþ1
J;kJ jkJ�1 þ KlðJÞþ1

J;kJ
ðylðJÞþ1

J;kJ
� Cx̂lðJÞþ1

J;kJ jkJ�1Þ ð71Þ

ulðJÞþ1
J;kJ

¼ �½bRlðJÞþ1
J þ ðBðJÞBÞT PlðJÞþ1

J;kJþ1BðJÞB�
�1
ðBðJÞBÞTðPlðJÞþ1

J;kJþ1AðJÞ � x̂lðJÞþ1
J;kJ jkJ

þ glðJÞ
J;kJþ1Þ ð72Þ
and we can use ulðJÞ
J;kJ

and ulðJÞþ1
J;kJ

to compute u0
0;k0

;u0
0;k0þ1; . . . ;u0

0;k0þ2J�1
as in Part 2, thus we have y0

0;k0þ1; y
0
0;k0þ2; . . . ; y0

0;k0þ2J , which

means ylðJÞ
J;kJþ1 and ylðJÞþ1

J;kJþ1 can be obtained, then repeat the above process. Fig. 4 shows one completely real-time computing

process of the control law u0
0;k0

at scale 0 under J ¼ 2.

4.2.1. Computational efficiency analysis
4.2.1.1. The LQG tracking control algorithm (LQGTC). In the LQG tracking control algorithm in Lemma 1, since the tracking time
interval is defined in ½0;N�, the computational numbers for Riccati-type matrix difference equations in (7) and (8), linear vec-
tor difference equations in (9) and (10) and Kalman filtering Eqs. (13)–(17) are all OðNÞ.

4.2.1.2. The WPD-based transcale LQG tracking control algorithm (WPD-TLQGTC). In the WPD-based transcale LQG tracking
control algorithm, for J scales decomposition, the WPD produces 2J sets of coefficients, and based on the features of Haar
WPD [35], the 2J sets of coefficients can be fulfilled in parallel, which means the computation for the Riccati-type matrix dif-
ference equations, linear vector difference equations, and Kalman filtering gain equations in each coefficients set in Step 2
can run in parallel, i.e., the computing of (53)–(59) and (60)–(66) can run in parallel. The computational numbers for the
Riccati-type matrix difference equations, linear vector difference equations, and Kalman filtering gain equations in each coef-
ficients sets are all OðN=2JÞ, which is the 1=2J of that of the conventional LQG tracking control algorithm. In Step 3, the com-
putation of (67)–(69) and (70)–(72) can also run in parallel, and the computational number for each parallel part is OðN=2JÞ.

4.2.1.3. The WT-based transcale LQG tracking control algorithm in [45] (WT-TLQGTC). In the WT-based transcale LQG tracking
control algorithm, for J scales decomposition, the WT produces J þ 1 sets of coefficients, and the J þ 1 Riccati-type matrix
difference equations, J þ 1 linear vector difference equations, and J þ 1 Kalman filtering equations in different coefficients
sets can run in parallel, and the maximum computational number is OðN=2Þ.

4.2.1.4. Comparison. Table 1 shows the comparison of the maximum computational number for the Riccati-type matrix dif-
ference equations (RTDEs), linear vector difference equations (LVDEs), and Kalman filtering equations (KFEs) in each parallel
computation for the three control algorithms. For the conventional LQG tracking algorithm, it cannot be fulfilled in parallel,
so the maximum computational number is OðNÞ. For the WPD-based transcale LQG tracking control algorithm, the 2J sets of
coefficients can be fulfilled in parallel, and the computational number for each set is the same, so the maximum computa-
tional number is OðN=2JÞ. It is clearly shown from Table 1 that the maximum computational number for the WPD-based tran-
scale LQG tracking control algorithm is the 1=2J of that of the conventional LQG tracking control algorithm, and the 1=2J�1 of
that of the WT-based transcale LQG tracking control algorithm in [45].

It should be pointed out that although the proposed WPD-based transcale LQG tracking control algorithm increases the
computations from control laws ulðJÞ

J;kJ
;ulðJÞ

J;kJ
to control law u0

0;k0
as in Part 2 compared with the LQG tracking control algorithm,

since the computations in Part 2 are all additive and subtraction operations, these computations will not cost a lot of time.
Based on the above analysis, the WPD-based transcale control algorithm further improves the computational efficiency com-
pared with the conventional LQG tracking control algorithm than the WT based algorithm.

Remark 7. In this paper, we choose all the decomposition coefficients at the coarsest scale decomposition layer as the best
basis decomposition and develop the algorithm in that case. If we choose other wavelet packet basis as the best basis, such as
the wavelet basis, the processes in Steps 1–3 are similar, which means the WT-based transcale LQG tracking control
Table 1
Comparison of the three control algorithms.

Algorithm RTDEs LVDEs KFEs

LQGTC OðNÞ OðNÞ OðNÞ
WT-TLQGTC [45] OðN=2Þ OðN=2Þ OðN=2Þ
WPD-TLQGTC OðN=2JÞ OðN=2JÞ OðN=2JÞ
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algorithm in [45] is actually a special case of the WPD-based algorithm developed in this paper. From the point of the view of
computation efficiency, the decomposition structure in this paper is better than that of others, because under this
decomposition structure, the number of decomposition coefficients at each set is not only equal but also the fewest.
Remark 8. It can be seen from Steps 1–3 that although the computation number for each coefficients set can be further
reduced if we choose larger J, the computing from control laws ulðJÞ

J;kJ
;ulðJÞ

J;kJ
to control law u0

0;k0
will become more complex

and more computing time will be cost, so how to decide the decomposition scale J in the algorithm should consider the com-
promise between the computing time of equations in (53)–(72) and the computing time of equations as in Part 2.
Remark 9. If the desired output is chosen as �zk ¼ 0 2 Rn, the algorithm in Lemma 1 reduces to the conventional finite-hori-
zon LQG control algorithm. Steps 1–3 can be applied to develop the WPD-based transcale LQG control algorithm. Moreover, if
the system noise wk and the measurement noise vk are not considered, the algorithm in Lemma 1 reduces to the conven-
tional finite-horizon LQ tracking control algorithm, Steps 1–3 can be applied to develop the WPD-based transcale LQ tracking
control algorithm [44].

Denote
MðjÞ
1 MðjÞ

2

MðjÞ
3 MðjÞ

4

" #
,M�1ðBðj�1ÞÞ

�1
BðjÞM�1;T ð73Þ
where M 2 Rn�n is an elementary matrix such that BT M ¼ 0 Im½ �; Im 2 Rm�m is an unit matrix, MðjÞ
4 2 Rm�m.

Theorem 2. If MðjÞ4 is nonsingular, the control law u0
0;k0

solved from Part 2 can guarantee the performance indexes (47) and (48) at
the coarsest scale decomposition layer are minimized.
Proof. The proof of Theorem 2 is similar to that of Theorem 2 in [45] and thus is omitted for brevity. h

Remark 10. From ðBðj�1ÞÞ
�1

BðjÞ ¼ I þ A2j�1

, if all the eigenvalues of A being with in the unit circle, MðjÞ
4 is nonsingular can be

easily guaranteed.
Theorem 3. If the system (1) and (2) satisfies Assumptions 1 and 2 and MðjÞ
4 is nonsingular, the following inequality can be guar-

anteed under the proposed algorithm
E
1
2

eT
0;NFe0;N þ

1
2

XN�1

k0¼0

eT
0;k0

Qe0;k0

( )
6

kmax

kmin

X
lðJÞ

XlðJÞþ1

s¼lðJÞ
Js;�: ð74Þ
where
JlðJÞ;�
,

1
2

E elðJÞ;T
J;M�1

bF lðJÞ
J elðJÞ

J;M�1 þ
XM�2

kJ¼0

elðJÞ;T
J;kJ

bQ lðJÞ
J elðJÞ

J;kJ

� �8<:
9=; ð75Þ

JlðJÞþ1;�
,

1
2

E elðJÞþ1;T
J;M�1

bF lðJÞþ1
J elðJÞþ1

J;M�1 þ
XM�2

kJ¼0

ðelðJÞþ1;T
J;kJ

bQ lðJÞþ1
J elðJÞþ1

J;kJ
Þ

8<:
9=; ð76Þ
represent the optimal performance indexes of tracking error part under the control laws ulðJÞ
J;kJ
;ulðJÞþ1

J;kJ
, and

kmax ¼maxfmaxfkðFÞg;maxfkðQÞggkmin ¼minfminfkðbF lðJÞ
J Þg;minfkðbQ lðJÞ

J Þg;minfkðbF lðJÞþ1
J Þg;minfkðbQ lðJÞþ1

J Þgg;maxfkð�Þg;
minfkð�Þg represent the maximum and minimum eigenvalues of matrix, respectively.
Proof. See the Appendix C. h
5. Illustrative example

Example 1. Consider the following linearized satellite attitude model with small angular maneuvers under the influence of
gravity gradient torque around Local-Vertical–Local-Horizontal (LHLV) reference frame [20],
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Fig. 5. RMSE in output.
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_xt ¼ Gxt þ Hut þ Nwt ð77Þ
yt ¼ Cxt þ v t ð78Þ
where xt ¼ ½/; h;w; _/; _h; _w� 2 R6;ut 2 R3 and yt 2 R6 are the state, input torque and measurement vectors respectively. G is the
state matrix, H is control input matrix, N is disturbance input matrix and C is the measurement matrix. The system noise
wt 2 R3 and the measurement noise v t 2 R6 are uncorrelated white zero-mean Gaussian vectors, where the statistical char-
acters are given as
Efwtg ¼ 0; Efv tg ¼ 0
EfwtwT

sg ¼ Q edt�s

Efv tvT
sg ¼ Redt�s

EfwtvT
sg ¼ 0

8>>><>>>: ð79Þ
In the particular problem they are given by
G ¼

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

4-2
0ðJz�JyÞ

Jx
0 0 0 0 -0ðJx�JyþJzÞ

Jx

0 3-2
0ðJx�JzÞ

Jy
0 0 0 0

0 0 -2
0ðJx�JyÞ

Jz

-0ðJy�Jx�JzÞ
Jz

0 0

2666666666664

3777777777775

H ¼

0 0 0
0 0 0
0 0 0
1
Jx

0 0

0 1
Jy

0

0 0 1
Jz

266666666664

377777777775
; C ¼ I6�6
where /; h;w are Eular angles, Jx; Jy; Jz are three axis inertia matrices, -0 is the mean orbital motion. The
simulation parameters are chosen as in [20], where Jx ¼ 305:89126 kg m2; Jy ¼ 314:06488 kg m2; Jz ¼ 167:33919 kg m2;

-0 ¼ 0:001 rad=s; /ð0Þ ¼ 3deg; h ¼ �1deg; w ¼ 0:5deg; _/ð0Þ ¼ 0:1deg=s; _h ¼ �0:1deg=s; _w ¼ 0:1deg=s; Q e ¼ diagf5� 10�3;

5� 10�3; 5� 10�3g; Re ¼ diagf10�2;10�2;10�2g. It should be pointed out that the satellite attitude dynamic system given in
(77) and (78) is a continuous model, however, the calculation of digital computer is discrete in time, when the system is
controlled by digital computer or the controlled system is modeled, analyzed and designed by digital computer, the
continuous model should be discretized. So the continuous model (77) and (78) should be discretized into discrete model

as in (1)–(3), where A ¼ expðGTÞ;B ¼ ð
R T

0 expðGtÞdtÞH;D ¼ ð
R T

0 expðGtÞdtÞN, the sampling period T is chosen as 0.1 s,

zk 2 R3 is defined as output vector and the output matrix is chosen as Cd ¼ I3. For convenience, the desired output is given
as in discrete form
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�zk ¼
3 sinð0:2kÞ þ cosð0:1kÞ

2 sinð0:1kÞ þ 1:5 cosð0:1kÞ
2 cosð0:2kÞ þ sinð0:1kÞ

264
375 ð80Þ
For comparison, the LQG tracking control algorithm in Lemma 1, WT-based transcale LQG tracking control algorithm in
[45] and WPD-based transcale LQG tracking control algorithm in this paper will all be applied. For the sake of simplicity, we
denote ‘‘LQGTC’’, ‘‘WT-TLQGTC’’ and ‘‘WPD-TLQGTC’’ for the LQG tracking control, WT-based transcale LQG tracking control
and WPD-based transcale LQG tracking control, respectively. The coarsest scale is chosen as J ¼ 2, the quadratic stochastic
performance indexes in (47) and (48) are chosen at scale 2 and the weighting matrices in (47) and (48) are chosen asbF 0

2 ¼ 1; bQ 0
2 ¼ 1; bR0

2 ¼ 10�7; bF 2
2 ¼ 1; bQ 2

2 ¼ 1; bR2
2 ¼ 10�7; bF 1

2 ¼ 1; bQ 1
2 ¼ 1; bR1

2 ¼ 10�7; bF 3
2 ¼ 1; bQ 3

2 ¼ 1; bR3
2 ¼ 10�7, respectively. For



Table 2
Comparison of three control algorithms, where J ¼ 2;N ¼ 400.

Algorithm API CPU-time

LQGTC 375.1643 7.7385
WT-TLQGTC [45] 669.7347 4.0894
WPD-TLQGTC 713.0164 2.4585

Table 3
Comparison of three control algorithms, where J ¼ 3;N ¼ 400.

Algorithm API CPU-time

LQGTC 375.1643 7.7385
WT-TLQGTC [45] 926.2310 4.5178
WPD-TLQGTC 1023.2158 2.0476
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WT-LQGTC in [45], the weighting matrices are chosen as bF 0
2 ¼ 1; bQ 0

2 ¼ 1; eR0
2 ¼ 10�7; eF 1

2 ¼ 1; eQ 1
2 ¼ 1;eR1

2 ¼ 10�7; eF 1
1 ¼ 1; eQ 1

1 ¼ 1; eR1
1 ¼ 10�7, respectively, and for LQGTC, the weighting matrices are chosen as F ¼ 1;Q ¼ 1

and R ¼ 10�7. To compare the control performance, denote z0;i
0;k0

as the output at time k0 at the ith Monte Carlo run. Suppose

K of such Monte Carlo runs are carried out, the root mean square error (RMSE) in output at time k0 can be calculated as [45]
RMSEk0 ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK

i¼1
z0;i

0;k0
� �z0;k0

� �T
z0;i

0;k0
� �z0;k0

� �� �s
ð81Þ
The following average performance indexes (API) is also defined as performance metric, where
API ,
1
K

XK

i¼1

1
2
ðei

0;NÞ
T
Fei

0;N þ
1
2

XN�1

k0¼0

ðei
0;k0
ÞT Qei

0;k0
þ 1

2

XN�1

k0¼0

ðui
0;k0
ÞT Rui

0;k0

" #
ð82Þ
and the subscript i in (81) and (82) represents the ith Monte Carlo run.
For J ¼ 2, the simulation results averaged over 50 Monte Carlo runs are shown in Figs. 5–8 and Table 2. Fig. 5 shows the

simulation results of the corresponding RMSE in output, which reflect the tracking errors. Figs. 6–8 show the simulation
results of three components of desired output �z0;k0 , average system output (ASO) 1

K

PK
i¼1z0;i

0;k0
under LQGTC, WT-TLQGTC

and WPD-TLQGTC, respectively. The values of API and CPU-time of WPD-TLQGTC are compared in Table 2 with that of
WT-LQGTC and LQGTC, respectively. It can be seen from Figs. 6–8 that the three algorithms can all provide good tracking
performance. It is perhaps surprising to see from Fig. 5 that the tracking errors of WPD-TLQGTC and WT-LQGTC are better
than that of LQGTC at some time, at least for this 2 scales decomposition case that we simulated. However, this dose not
mean the WPD-TLQGTC algorithm or the WT-LQGTC algorithm with better performances compared with LQGTC, since
the conventional LQGTC guarantees the integrate performance (including the energy of tracking errors part and controllers
part) is optimal, but not guarantees each part is optimal. Fig. 5 only reflects the performance of tracking errors part in some
extent. In fact, the performance of WPD-TLQGTC algorithm and WT-LQGTC algorithm are determined by choosing optimal
indexes at different scales (by choosing F, Q, R at different scales), which gives us more chances to improve the performance
of tracking errors part compared with conventional LQGTC. It is clearly seen from Table 2 that the integrate performances
(the values of API) of WPD-TLQGTC and WT-LQGTC are worse than that of LQGTC since the LQGTC guarantees the perfor-
mance optimal at the finest scale but the WPD-TLQGTC algorithm guarantees the performance optimal at the coarsest scale
decomposition layer and the WT-TLQGTC algorithm in [45] guarantees the performance optimal at each coarser scale,
respectively.

To assess the computation efficiency of the proposed method, we compute the total CPU time in MATLAB 7.10 on a
3.30 GHz i3-2120 CPU Intel Core-based computer operating under Windows XP (Professional). It appears that the average
CPU time for WPD-TLQGTC is about 7.7385 s, that for WT-TLQGTC is about 4.0894 s and that for the LQGTC is about
2.4585 s. These accord to our analysis in computational efficiency part, that the CPU-time of the LQGTC algorithm is about
one time longer than that of the WT-TLQGTC algorithm and the CPU-time of the WT-TLQGTC algorithm is about one time
longer than that of the WPD-TLQGTC algorithm, which mean the WPD-TLQGTC algorithm proposed in this paper can provide
better computation efficiency than that of WT-LQGTC algorithm in [45].

Moreover, for J ¼ 3, the simulation results are shown in Table 3. Comparing with the CPU-time in Tables 2 and 3, which
shows that, with the increasing of scale J, the time for WT-TLQGTC algorithm is increasing, and the time for WPD-TLQGTC
algorithm is reducing, these according our analysis in computational efficiency part, since the computational efficiency for
computing Riccati-type matrix difference equations, linear vector difference equations and Kalman filtering equations can be
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further improved under WPD-TLQGTC algorithm with the increasing of scale J. It is seen from Tables 2 and 3 that the
integrate performances (the values of API) of WPD-TLQGTC and WT-LQGTC under J ¼ 3 are worse than that of under
J ¼ 2. These comparisons further show that the proposed WPD-TLQGTC algorithm can provide better computational perfor-
mance than the WT-TLQGTC algorithm in [45].

Based on the above simulation results, we can conclude that the proposed WPD-TLQGTC algorithm is effective for discrete
stochastic systems, further, it provides a better compromise between performance index and computational efficiency com-
pared with the conventional LQG tracking control algorithm than the WT-TLQGTC algorithm in [45].
6. Conclusions

This paper introduces a Haar WPD-based real-time transcale LQG tracking control algorithm for the finite-time output
tracking problem of discrete stochastic systems. Based on the state-space models of WPC established at the coarsest scale
decomposition layer, the algorithm is developed by integrating two parts: one shows how to design the desired control laws
at the coarsest scale decomposition layer, and the other shows how to recursively compute the control law at the finest scale.
The simulation results show that the proposed algorithm not only compensates the phenomena that may occur at different
scales but also provides a better compromise between performance index and computational efficiency compared with the
conventional LQG tracking control algorithm than the WT-based algorithm in [45].
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Appendix A. Proof of Theorem 1

To prove Theorem 1, the induction method is used. The state-space model at scale 0 is given as in (31)–(33). Use the Haar
WPD, the state-space models of WPD at the decomposition layer of scale 1 can be generated as
x0
1;k1þ1 ¼

ffiffiffi
2
p

2
x0

0;k0þ1 þ x0
0;k0þ2

� �
¼

ffiffiffi
2
p

2
A2x0

0;k0�1 þ ABu0
0;k0�1 þ Bu0

0;k0
þ ADw0

0;k0�1 þ Dw0
0;k0
þ A2x0

0;k0
þ ABu0

0;k0
þ Bu0

0;k0þ1 þ ADw0
0;k0
þ Dw0

0;k0þ1

� �
¼ A2x0

1;k1
þ ðI þ AÞBu0

1;k1
þ ðI þ AÞDw0

1;k1

ð83Þ
and
x1
1;k1þ1 ¼

ffiffiffi
2
p

2
x0

0;k0þ1 � x0
0;k0þ2

� �
¼ A2x1

1;k1
þ ðI þ AÞBu1

1;k1
þ ðI þ AÞDw1

1;k1
ð84Þ
At the decomposition layer of scale 1
y1
0;k1
¼

ffiffiffi
2
p

2
y0

0;k0�1 þ y0
0;k0

� �
¼

ffiffiffi
2
p

2
Cx0

0;k0�1 þ v0
0;k0�1 þ Cx0

0;k0
þ v0

0;k0

� �
¼ Cx1

1;k1
þ v1

1;k1
ð85Þ

y1
1;k1
¼

ffiffiffi
2
p

2
y0

0;k0�1 � y0
0;k0

� �
¼ Cx1

1;k1
þ v1

1;k1
ð86Þ

z0
1;k1
¼

ffiffiffi
2
p

2
z0

0;k0�1 þ z0
0;k0

� �
¼

ffiffiffi
2
p

2
Cdx0

0;k0�1 þ Cdx0
0;k0

� �
¼ Cdx0

1;k1
ð87Þ

z1
1;k1
¼

ffiffiffi
2
p

2
z0

0;k0�1 � z0
0;k0

� �
¼ Cdx1

1;k1
ð88Þ
thus the state-space models WPD at the decomposition layer of scale 1 are established. By using the linear property of expec-
tation and Assumption 1, we can obtain Efw0

1;k1
g ¼ 0; Efw0

1;k1
w0;T

1;k1
g ¼ U0

1; Efv0
1;k1
g ¼ 0; Efv0

1;k1
v0;T

1;k1
g ¼ V ; Efw0

1;k1
v0;T

1;k1
g ¼ 0 and

Efw1
1;k1
g ¼ 0; Efw1

1;k1
w1;T

1;k1
g ¼ U1

1; Efv1
1;k1
g ¼ 0; Efv1

1;k1
ðv1

1;k1
ÞTg ¼ V ; Efw1

1;k1
v1;T

1;k1
g ¼ 0. Suppose that the state-space models at

the decomposition layer of scale j� 1 are of the form (35)–(44), then, similar to (83) and (84), at the decomposition layer
of scale j, we have
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xlðjÞ
j;kjþ1 ¼

ffiffiffi
2
p

2
x

lðjÞ
2

j�1;kj�1þ1 þ x
lðjÞ
2

j�1;kj�1þ2
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ð89Þ

xlðjÞþ1
j;kjþ1 ¼

ffiffiffi
2
p

2
x

lðjÞ
2

j�1;kj�1þ1 � x
lðjÞ
2
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ð90Þ
and ylðjÞ
j;kj
; ylðjÞþ1

j;kj
; zlðjÞþ1

j;kj
and zlðjÞþ1

j;kj
can be obtained as in (85)–(88). By using the linear property of expectation and Assumption 1,

we can obtain the corresponding expectations and covariances.

Appendix B. Proof of Lemma 2

Denote
ElðjÞðkjÞ , elðjÞ;T
j;kj�2J�jþ1

; elðjÞ;T
j;kj�2J�jþ2

; � � � ; elðjÞ;T
j;kj

� �T

ð91Þ
From (28), we have
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ke0
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Appendix C. Proof of Theorem 3

It can be known from Theorem 2 that u0
0;k0

can minimize the cost functions (47) and (48), then from Lemma 2, we have
kminE
1
2

eT
0;NFe0;N þ

1
2

XN�1

k0¼0

eT
0;k0

Qe0;k0

( )
6 kminkmaxE

1
2

X
lðJÞ

XlðJÞþ1

s¼lðJÞ
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J;kJ
k2

8<:
9=; 6 kmax

X
lðJÞ

XlðJÞþ1

s¼lðJÞ
Js;� ð93Þ
Thus, which yields (74).
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